

Original Research

Comparative Analysis of Civil Aircraft Trade in the USSR and Modern Russia: Causes of Decline, Current Challenges, and Development Prospects

Yan Syrbo^{1*}

¹School of Economics, Shanghai University, Baoshan Qu Shangda Road 99, Shanghai, 200444, China

Article history:

Received: 12 December 2025

Accepted: 25 December 2025

Published Online: 31 December 2025

*Correspondence:

School of Economics, Shanghai University, Baoshan Qu Shangda Road 99, Shanghai, 200444, China

How to cite this article:

Yan Syrbo (2025). *Comparative Analysis of Civil Aircraft Trade in the USSR and Modern Russia: Causes of Decline, Current Challenges, and Development Prospects*. *North American Academic Research*, 8(12), 512-526. doi: <https://doi.org/10.5281/zenodo.18263643>

Publisher's Note: NAAR stays neutral about jurisdictional claims in published maps/image and institutional affiliations. **Copyright:** ©2025 by the authors. Author(s) are fully responsible for the text, figure, data in this manuscript submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>)

Abstract

The Soviet Union once stood as a major producer and exporter of civilian aircraft, accounting for approximately one-quarter of global civilian aircraft output in the late 1980s. In stark contrast, the post-1991 Russian civil aircraft industry experienced a dramatic collapse: annual production fell from 715 civilian aircraft in 1990 to only 56 by 1998, and to a mere 4 aircraft in 2000. This article provides a comparative analysis of civil aircraft trade in the USSR and modern Russia, examining the historical peak and subsequent decline of the sector. Key economic and policy factors behind Russia's diminished aircraft manufacturing and exports are discussed, including the fragmentation of the Soviet industrial base, the loss of domestic and export markets, competition from Western manufacturers, and the impact of international trade regimes and sanctions. The paper also analyzes current challenges facing Russia's civil aviation industry—such as limited industrial capacity, financing constraints, and intense global competition—and evaluates development prospects. Government-led strategies for revival are explored, including import substitution programs, new aircraft projects like the Sukhoi Superjet 100 and MC-21, and attempts at international partnerships. While Russia is pursuing an ambitious revitalization of its civil aircraft sector (including plans to produce 1,000 airliners by 2030), significant obstacles remain. The analysis concludes that without sustained investment, technological innovation, and integration into global markets (or the development of viable alternatives), Russia's civil aviation industry will continue to lag, with its future hinging on the success of current import-substitution initiatives and the geopolitical climate shaping trade and cooperation.

Keywords: International trade; civil aircraft industry; import substitution; sanctions and export controls; Geopolitical impact on trade; Russian aircrafts trade

Introduction

The evolution of Russia's civil aircraft industry from the Soviet era to the present provides a compelling case study of industrial transformation in the face of political upheaval and global market forces. During the Cold War, the USSR built a large fleet of airliners, cargo planes, and other civil aircraft under a centrally planned system, supplying both domestic airlines and allied countries. Soviet-designed passenger jets such as the Tupolev Tu-154 and Ilyushin Il-62 once carried millions of passengers across the USSR and abroad; by the late 1980s, the Soviet Union accounted for about 25% of worldwide civilian aircraft production. However, the collapse of the USSR in 1991 precipitated a steep decline in aircraft manufacturing and trade. In the ensuing

decades, Russia's civil aviation industry struggled to compete in an open global market dominated by Boeing and Airbus, and Russian airlines largely turned to importing Western aircraft rather than purchasing domestically produced models. This paper examines the comparative performance and structure of the civil aircraft sector in the Soviet period versus modern Russia, analyzes the causes of its post-Soviet decline, and assesses current challenges and future prospects for revitalization.

The analysis is organized as follows. The Comparative Overview section contrasts the scale and scope of civil aircraft production and export in the USSR with that in post-1991 Russia, highlighting key differences in industrial organization and market reach. Next, the Challenges section discusses the major factors behind the decline of Russia's aircraft trade and manufacturing capacity—from the economic shocks of the 1990s to ongoing structural problems and technological gaps—as well as the present-day issues of limited capacity, financing, and competition. The International Trade Context section evaluates how global trade agreements, export controls, and international sanctions have influenced Russia's civil aviation sector, including the effects of WTO accession and recent Western sanctions on aircraft and parts. The Development Outlook section explores realistic prospects for the industry's development, focusing on Russia's import substitution strategy and government support programs (such as the Sukhoi Superjet 100 and the MC-21 projects), potential international partnerships, and the feasibility of Russia regaining a significant role in the global civil aircraft market. Finally, the Conclusion summarizes the findings and reflects on the conditions under which Russia's civil aircraft industry might rebound or further decline.

Comparative Overview: USSR vs. Modern Russia in Civil Aircraft Trade

In the late Soviet era, civil aircraft production was a significant industrial activity integrated into the planned economy and oriented both toward domestic use and export to allied states. The Soviet Union's aerospace industry was centrally managed through design bureaus (OKBs) and manufacturing complexes rather than independent competing firms. Production was distributed across various Soviet republics and Warsaw Pact countries as dictated by Gosplan (the State Planning Commission), creating an extensive inter-republic supply chain. Under this system, the USSR developed a full range of civil aircraft—from small regional planes to long-range airliners—primarily to meet internal needs and those of client states. Aeroflot, the state airline, held a monopoly on air transport and operated exclusively Soviet-built aircraft, which ensured a captive domestic market for the industry.

By quantitative measures, the USSR was a world leader in aircraft manufacturing until the 1980s. Figure 1 provides a snapshot of Soviet versus Russian civilian aircraft output around the time of the Soviet collapse. The USSR produced hundreds of civilian aircraft annually during its peak: for example, 715 civil aircraft were produced in 1990 alone. This volume represented a substantial share of global production—approximately one-quarter of the world's civilian aircraft output in the late 1980s. Soviet civil aircraft exports were largely directed to Socialist Bloc allies and other developing countries under bilateral agreements and barter trade. Notably, state-run export agencies handled foreign sales and did not retain profits; proceeds were allocated back to the industry per central plan targets. Thus, Soviet civil aircraft trade was driven as much by geopolitical and strategic considerations as by economic profit.

Fig. 1: Civilian aircraft production in USSR/Russia (selected years)

The post-Soviet Russian Federation inherited this once-formidable industry, but its situation changed radically. As Figure 1 shows, Russia's civil aircraft output declined to double digits by the late 1990s (56 planes in 1998) and reached a historical low of just 4 civilian aircraft in the year 2000. The collapse of production was accompanied by a near disappearance of Russian civil aircraft exports. Whereas the USSR had exported numerous airliners to client states, modern Russia has seen only a few sporadic sales of its civilian aircraft abroad. Instead of remaining an exporter, Russia became a net importer of commercial aircraft in the 1990s and 2000s. Western-built Boeing and Airbus aircraft, often acquired second-hand or via leasing, rapidly penetrated the fleets of Russian airlines due to their superior efficiency and the lack of competitive new Russian models. By the 2000s, the fleet composition of Russian carriers had essentially reversed from Soviet times; over 80% of the planes operated by Russia's top airlines were foreign-made as of 2022, and these Western aircraft (mostly Boeing and Airbus models) carried about 95% of Russia's passenger traffic prior to the 2022 sanctions. This stark transition underscores the marginalization of Russian-made civil aircraft in their own domestic market.

Structurally, the Russian aircraft industry also underwent reorganization. In the 1990s, the formerly integrated Soviet design and production system fragmented into numerous independent companies (design bureaus, factories, and parts suppliers) at a time when state orders and funding had evaporated. In an effort to salvage the industry, the Russian government eventually moved to reconsolidate these entities. In 2006, President Vladimir Putin's administration created the United Aircraft Corporation (UAC) as a majority state-owned holding company, merging major legacy firms such as Mikoyan, Sukhoi, Ilyushin, Tupolev, and Irkut under one umbrella. This followed an earlier, less successful attempt in the late 1990s by President Boris Yeltsin to form an aviation holding (VPK-MAPO) to integrate key companies. The UAC aimed to achieve economies of scale and coordinate resources to revive both military and civil aircraft production. On the military side, consolidation helped Russia capitalize on export opportunities (e.g., fighter jet sales to India and China) and stabilize output in the 2000s. On the civilian side, however, recovery was slow. By the mid-2000s, Russia was building only a handful of civil aircraft per year—e.g., 6 civilian airliners were delivered in 2005, rising to 15 in 2009—a negligible volume compared to the hundreds produced annually by Boeing and Airbus in that period. In effect, modern Russia's share of global civil aircraft manufacturing has been insignificant, a dramatic fall from the Soviet era.

Qualitatively, Soviet-designed aircraft of the 1970s and 80s, while numerous, lagged behind Western competitors in fuel efficiency, avionics, and passenger comfort. This made it difficult for them to compete in open markets once airlines had a choice. After 1991, many Soviet-era airliners were rapidly phased out or confined to domestic use due to stricter safety and noise regulations internationally; many models failed to obtain Western safety or environmental certifications in the 1990s, limiting their export potential. Russian airlines, newly commercialized, increasingly opted for Western aircraft that met international standards and offered lower operating costs. The comparative trade trajectory is thus stark: the USSR's civil aircraft industry

was large but inward-focused and geopolitically driven, whereas post-Soviet Russia's industry shrank and lost even its home market to imports. The following sections delve into the reasons behind this decline and examine the contemporary challenges and strategies as Russia attempts to rebuild its civil aviation prowess.

Challenges: Causes of Decline and Current Problems in Russia's Civil Aircraft Sector

The decline of Russia's civil aircraft industry in the 1990s can be attributed to a confluence of economic disintegration, loss of markets, and the systemic challenges of transitioning to a market economy. Firstly, the breakup of the Soviet Union fragmented the aerospace supply chain. Critical design bureaus and production facilities that had functioned as one system were suddenly split across different newly independent states. For example, the Antonov design bureau (known for transports and passenger planes) ended up in independent Ukraine, and factories in states like Ukraine, Uzbekistan, and Georgia that had built components or aircraft for the Soviet fleet were no longer directly accessible. This geopolitical disjunction disrupted established production lines and parts supply, undermining Russia's ability to continue serial aircraft manufacturing at volume.

Secondly, the industry lost centralized state funding and coordination. During the Soviet era, development and production were state-funded endeavors with guaranteed procurement by Aeroflot or the military. In the 1990s, the Russian government was in fiscal crisis and sharply reduced support for aviation. Civil design bureaus like Tupolev and Ilyushin, which had relied on government orders, were left without customers and faced imminent bankruptcy. The Yeltsin-era economic "shock therapy" and liberalization rapidly opened the domestic market to imports, which proved devastating to domestic manufacturers that were not cost-competitive. As tariffs were lowered and Western aircraft became available, Russian airlines often found it cheaper and more reliable to lease a used Boeing 737 or Airbus A310 than to finance a new Russian plane. The result was a flood of imports that devastated Russia's manufacturing sector, including aerospace, in the 1990s. Protective tariffs were implemented to some extent, but they only slowed the decline rather than preventing it.

Thirdly, the collapse of the Council for Mutual Economic Assistance (Comecon) and the Warsaw Pact meant the loss of traditional export markets. Under the Soviet system, Eastern Bloc airlines and many developing countries bought or were supplied with Soviet aircraft as part of aligned economic networks. After 1991, those markets either disappeared or shifted to Western suppliers. For instance, former Comecon members in Eastern Europe quickly phased out Soviet planes in favor of Boeing and Airbus models as they integrated with the EU and NATO. Thus, Russian manufacturers not only lacked domestic orders but also saw external demand for their aircraft evaporate. This loss of export markets was a critical blow, as Soviet civil exports had helped sustain production volumes.

Fourthly, the industry suffered a severe human capital drain and organizational upheaval. The chaotic transition period saw highly skilled aerospace engineers and workers face unemployment or unpaid wages. Many left the aviation field or emigrated to seek opportunities elsewhere. The workforce contraction and emigration of engineers in the 1990s weakened the industry's innovative capacity. Design bureaus that had produced world-class prototypes in the Soviet era could barely survive financially, let alone invest in new designs. As noted, iconic firms like Tupolev and Ilyushin were pushed to the brink of insolvency, and actual production of civilian aircraft nearly halted in the 1990s. The 1998 Russian financial crisis compounded these issues by collapsing the ruble and domestic purchasing power, further crippling airlines and manufacturers alike.

By the end of the 1990s, these factors culminated in the extremely low production figures cited earlier (only 4 civilian planes built in 2000). The few new aircraft models Russia tried to market—such as the medium-range Tupolev Tu-204 and long-range Ilyushin Il-96 (both developed in the late Soviet period)—saw very limited production runs due to a lack of buyers and technical issues (e.g., the Il-96's fuel efficiency lagged far behind Western rivals). Many Russian-made planes also did not meet evolving international standards; for example,

Western noise regulations in the 1990s banned older Soviet jetliners from key airports unless they were fitted with hush-kits. Nearly all newly built Russian civilian aircraft struggled to obtain Western safety or environmental certification, which was a prerequisite for selling in many markets or even for Russian airlines to fly abroad. This created a vicious cycle: without international certification, exports were curtailed, and without a large domestic base of sales, there was little revenue to improve the products to meet those certifications.

In summary, the causes of the post-Soviet civil aviation collapse were multifaceted: a broken supply chain, loss of state backing, loss of captive markets, aggressive foreign competition, and internal brain drain and obsolescence. The result was a near-total contraction of an industry that had been a source of national pride. This historical context sets the stage for the challenges that continue to plague the sector today.

Current Problems: Industrial Capacity, Financing, and Global Competition

Despite some recovery since the 2000s, Russia's civil aircraft industry continues to face significant structural problems that limit its competitiveness and output. A first major challenge is limited industrial capacity and outdated infrastructure. The production facilities inherited from the Soviet era saw years of underutilization, and many have not produced civilian aircraft in meaningful quantities for decades. By 2025, observers noted that although Russia still nominally possessed over two dozen aircraft factories, only 13 new commercial jets were completed in the three years following the 2022 invasion of Ukraine. This underscores the extremely low throughput. Many factories remain geared toward military production or maintenance, and ramping up modern civil production requires retooling and investment. Manufacturing modern airliners is capital-intensive and demands cutting-edge machinery (for advanced materials like composites) and precise quality control—areas where Russian plants have lagged due to sanctions and limited upgrades. Even assembling the Sukhoi Superjet 100 (a relatively small regional jet) proved difficult to scale; in recent years Sukhoi has struggled to reach an output of even 30 aircraft per year, far below initial targets for profitability. Industry experts warn that factories cannot simply resume high-volume operations after such a prolonged lull. The skilled labor gap exacerbates this: the cohort of engineers and technicians experienced in civil aircraft manufacturing has thinned, and attracting younger talent to an industry with uncertain prospects is challenging.

A second and related challenge is financing and economic sustainability. Developing and producing competitive airliners requires enormous upfront investment—often billions of dollars over many years—with long payback periods. In the West, this is usually funded by a combination of company capital, orders from airlines (who place deposits), and capital markets. In Russia, however, the government is effectively the only entity able to finance such projects. The domestic market alone is too small and financially weak to generate sufficient commercial orders that could finance development. Russian airlines until recently preferred to lease Boeing/Airbus jets rather than spend on unproven domestic models, so manufacturers lacked advance orders to raise funds. Consequently, Russia's new aircraft programs have relied on state injections and credit from state-owned banks. For instance, upon forming UAC, the government injected capital (UAC's budget was increased to 24 billion rubles in 2008, roughly \$770 million) to prop up the companies. Continuous subsidies are provided in various forms (research grants, soft loans, subsidies to airlines for buying domestic planes, etc.). In 2002, the government even enacted a scheme to partially reimburse airlines for lease payments on Russian-built aircraft as an incentive for carriers to buy domestic. These subsidies acknowledge that without state support, Russian civil planes are often not cost-competitive. The financing challenge is also acute in securing foreign investment or partnerships—Western aerospace firms are reluctant or now outright forbidden (under sanctions) to invest in Russian projects, and even before sanctions, concerns over intellectual property and Russia's business climate limited such partnerships. The lack of diverse financing sources means Russia's civil aircraft industry expansion is constrained by government budget priorities and the broader economy (which in turn depends on volatile commodity revenues).

Thirdly, global competition and technological gaps continue to hamstring Russian civil aircraft on the market. The commercial airliner industry is a duopoly dominated by Boeing and Airbus (with emerging competition from Bombardier/Embraer in regional jets and now COMAC in China). These competitors have global supply chains, economies of scale in manufacturing, and well-established after-sales support networks. Russian offerings, by contrast, have historically been one generation behind in technology (for example, lagging in engine efficiency and avionics) and suffer from a reputation of inadequate customer support. A telling example is the Sukhoi Superjet 100 (SSJ100) experience. Hailed as the first post-Soviet civilian jet, the SSJ100 entered service in the 2010s and even achieved some export orders (notably an order of 22 aircraft by Mexico's Interjet). However, it revealed the persistent support and reliability issues of Russia's industry. Interjet was ultimately forced to ground most of its Superjet fleet due to a lack of spare parts and long delays in maintenance; at one point, the airline had to take most of its 22 SSJ100s out of service because Sukhoi could not supply parts in a timely manner. Interjet received compensation for these shortcomings and eventually decided to remove the Russian jets from its fleet entirely, switching back to Airbus aircraft. This case illustrates how global airlines have little tolerance for operational disruptions, and it tarnished the SSJ100's reputation. Other potential foreign customers grew wary of buying an aircraft that might leave them dependent on a Russian supply chain that had proven unreliable.

Moreover, Russian civil aircraft face the challenge of meeting international certification and performance benchmarks set by competitors. Even as newer models like the MC-21 (now Yakovlev MC-21) were being developed, they confronted a market environment where Airbus A320neo and Boeing 737 MAX families dominate on fuel efficiency and have secured orders in the thousands. Airbus and Boeing each produced roughly 300–800 jets annually in the late 2010s, whereas Russian output was in the tens—such scale allows Western firms to continually invest in R&D and supplier development. The MC-21, intended as a modern single-aisle jet to compete with those models, initially incorporated advanced features like composite wings and Western engines, but as discussed later, sanctions have forced design changes that may reduce its performance. The duopoly's stronghold on the market also means that airlines often have established training, maintenance, and leasing infrastructure around Boeing/Airbus products, making them reluctant to be the first to operate a new Russian type without a compelling advantage. Additionally, new entrants like China's COMAC (with its C919 narrow-body jet and CRAIC CR929 project, the latter originally a joint project with Russia) are adding to the competitive pressure in the limited space outside the Boeing/Airbus domain. In essence, Russian civil aircraft programs not only need to catch up technologically but also break into a market that is highly brand-loyal and risk-averse.

Another current problem, intertwined with the above, is the impact of international sanctions and export controls on day-to-day operations and technical capacity. (This will be discussed in detail in the next section.) In short, the sanctions regime has severely restricted access to foreign-made aviation components, forcing Russian manufacturers to redesign systems and hampering production of even existing models that relied on imported parts. For example, until recently, about half of the components and technologies in Russia's aircraft industry came from foreign sources. The sudden cutoff of these supplies after 2014 (and especially 2022) has led to parts shortages, assembly delays, and the need to reverse-engineer or produce substitutes, which often come with performance penalties. This compounds the challenge of delivering a product that can match competitors.

In summary, the contemporary Russian civil aircraft industry remains beset by capacity limitations, financial dependency on the state, and competitive disadvantages. Despite the consolidation under UAC and moderate output increases in the late 2000s, the sector has not achieved the self-sustaining momentum seen in the Soviet period. As of the mid-2020s, Russia produces at best a few dozen civilian aircraft in a good year, and its products struggle to gain trust in the international marketplace. These challenges form the backdrop against which any development strategy must be crafted, and they have been further intensified by external trade and geopolitical factors.

International Trade Context: Agreements, Export Controls, and Sanctions

International trade policies and external political factors have played a significant role in shaping—and constraining—Russia's civil aircraft trade since the Soviet collapse. One important aspect is Russia's integration (or lack thereof) into global trade agreements relevant to aerospace. A milestone was Russia's accession to the World Trade Organization (WTO) in 2012, after 18 years of negotiations. Joining the WTO committed Russia to more transparent and predictable trade rules, and it affected the aviation sector in several ways. Russia agreed to gradually lower some of its import tariffs on foreign aircraft as part of the accession agreement. However, notably, Russia declined to sign the WTO's plurilateral Agreement on Trade in Civil Aircraft, which would have eliminated tariffs entirely on civil aircraft and parts. Despite pressure from major trading partners, Russia maintained this protective stance, likely to shield its struggling domestic industry. Instead, Russia bound its tariffs for certain aircraft categories at rates like 7.5% (for wide-body jets) and up to 12.5% for smaller aircraft, after phased reductions. In practice, this meant importing aircraft remained somewhat costly, but not prohibitively so—and given the performance gap, Russian airlines were often willing to pay the premium for Western planes. WTO entry also required Russia to ease regulations on aircraft leasing and certification recognition, which facilitated domestic airlines in leasing foreign jets. In effect, while WTO membership brought Russia into global trade frameworks, it also exposed the domestic civil aviation sector to competition on a more level field. The government's choice not to eliminate import duties entirely indicates a recognition that Russian civil aircraft were not ready to compete head-to-head without some tariff support.

Export control regimes have long been a factor as well. During the Cold War, Western countries (through CoCom) tightly controlled the export of advanced aerospace technology to the USSR. In the 1990s, these controls relaxed as East-West relations improved, and Russia even benefitted from some technology partnerships (for instance, collaborating with Western engine makers and avionics suppliers in the 2000s for new projects). However, a reverse trend began in the mid-2010s. After Russia's actions in Crimea and Eastern Ukraine in 2014, the United States and the European Union imposed initial sanctions that included restrictions on certain dual-use aerospace technologies. These were fairly targeted at first, aimed more at military programs. Yet they signaled a growing risk: Russia's civil aerospace could be indirectly affected, since many components (like electronics or materials) overlap with dual-use categories.

A clear example of export controls impacting civil trade is the attempt to sell Russian airliners to sanctioned countries like Iran. When Western sanctions on Iran were briefly lifted after the 2015 nuclear deal, Iranian airlines initially placed orders with Airbus and Boeing. Russia saw an opportunity as well; in 2018, two Iranian carriers signed provisional deals to purchase a total of 40 Sukhoi Superjet 100s as Western deliveries stalled. However, the SSJ100 at that time contained significant Western content (including US-made components). As a result, the U.S. Treasury's Office of Foreign Assets Control (OFAC) refused to grant export licenses for those Superjet sales on the grounds that the aircraft contained over 10% U.S.-made parts. This effectively blocked the deal. Sukhoi then explored redesigning the jet to reduce American content below the threshold, but that proved difficult and time-consuming. This incident demonstrated how U.S. export controls can reach into ostensibly civilian transactions and how Russia's dependence on foreign parts can thwart its export ambitions. It was not limited to Iran: any potential third-party customer under U.S. sanctions (or even those wary of secondary sanctions) would hesitate to buy Russian aircraft with Western parts.

The most consequential trade constraints, however, have come from the comprehensive sanctions imposed on Russia's aviation sector after the February 2022 full-scale invasion of Ukraine. In 2022, the EU, U.S., and allies enacted an unprecedented package of sanctions that directly targeted civil aviation. These measures included bans on the sale or leasing of aircraft to Russia, a ban on exporting aircraft spare parts and maintenance services to Russia, the invalidation of insurance for aircraft in Russia, and sanctions on Russian airlines themselves. Airbus and Boeing halted all support to Russian airlines. Consequently, the foreign-made jets comprising the bulk of Russian fleets could no longer receive OEM parts or technical assistance legally. Many Western lessors also sought to repossess aircraft from Russian lessees (though Russia retaliated by re-

registering and retaining those aircraft domestically). The immediate expectation was that Russia's civil air travel might collapse for lack of airworthy planes. Indeed, analysts predicted in early 2022 that Russia's commercial aviation would be grounded once spare supplies ran out. In practice, Russia's airlines and authorities responded by using components from grounded aircraft (cannibalization), sourcing parts through third countries and gray markets, and reducing flight schedules. This kept a substantial portion of the fleet operational, albeit under a regime of "parallel imports" and safety compromises. Still, the sanctions delivered a massive shock to Russia's civil aircraft trade and industry—essentially cutting Russia off from the Western aerospace ecosystem. Russia could neither import new Boeing/Airbus jets (planned deliveries were canceled) nor easily export its own (as few as they were) because certification and insurance became problematic.

For the manufacturing side, the sanctions meant that ongoing projects like the MC-21 and SSJ100 had to be radically reconfigured. Before 2022, both these jets relied on various Western-made subsystems (engines, avionics, etc.). For instance, the initial MC-21 prototype flew with American Pratt & Whitney engines and composite wing materials from Hexcel (USA) and Toray (Japan). After the sanctions, Russia announced the MC-21 would only be built with domestically produced engines and parts, abandoning the Western-supplied Pratt & Whitney powerplant option. Similarly, the SSJ100's Franco-Russian SaM146 engine and avionics from firms like Thales were no longer accessible; UAC had to accelerate the development of an all-Russian replacement variant (now designated the SJ-100 or Superjet-New) with indigenous engines (the Aviadvigatel PD-8 turbofan) and systems. This push for import substitution (**importozameshchenie**) was not entirely new—it had been a strategic goal since at least 2014—but the 2022 sanctions turned it into an urgent necessity. Rostec, the state conglomerate overseeing UAC, explicitly stated that Western aircraft "will never be delivered to Russia" again and that the only path forward is a self-reliant aviation industry using locally built parts. In short, the sanctions forced Russia into a form of aviation autarky, reminiscent of Soviet-style self-sufficiency but without the Soviet-scale resources or captive empire.

Sanctions have also affected international partnerships. A prime example is the China-Russia joint wide-body project (CR929). Launched in the mid-2010s as a cooperation between UAC and China's COMAC, the CR929 was envisioned to challenge Boeing/Airbus in long-haul markets by pooling Russian and Chinese expertise (Russia providing design know-how, China providing production funding and market access). However, after 2022, this partnership faltered; reports in 2023–24 indicated that Russia had been quietly dropped from the project, with China proceeding alone. One reason cited was the impact of sanctions on Russia's ability to contribute; another was disagreement over suppliers (China preferred Western systems for better efficiency, which sanctions made impossible if Russia was involved). The CR929's fate illustrates how international collaboration in civil aerospace has become more difficult for Russia under the shadow of sanctions and geopolitical isolation.

On the whole, the international trade environment has moved from one of gradual integration to one of disconnection for Russia's civil aviation. WTO membership and bilateral agreements in the 2000s had begun to integrate Russia into the global market (for example, Russia had partnerships with European firms in the Superjet program and was selling business-jet variants to some foreign customers). Now, however, Russia is largely excluded from Western markets and technology flows. Its civil aircraft trade is limited to friendly or non-aligned countries, and even there, obstacles abound (financing, support, and fear of secondary sanctions). The next section explores how Russia is responding to these constraints and what prospects exist for developing its aviation industry under these new conditions.

Development Prospects: Strategies for Revival and Future Outlook

Facing the dual reality of a diminished industry and estrangement from Western markets, Russia has embarked on a concerted effort to revive and reinvent its civil aircraft sector. The development strategy centers on import substitution, state support, and the targeting of captive markets, with several high-profile programs as focal points. This section examines the prospects of these efforts, including new aircraft models and potential partnerships, and assesses their realism in light of current challenges.

The guiding principle of Russia's aerospace revival is to achieve technological self-sufficiency so that the industry is less vulnerable to sanctions or foreign dominance. In practice, this means redesigning aircraft to eliminate foreign-made components and rebuilding a domestic supplier base for everything from engines to avionics. The government has explicitly prioritized this in recent years; policy statements in 2023 emphasize that new civil aircraft like the Ilyushin Il-114-300 (a turboprop), the SJ-100 (Superjet New), and the Yakovlev MC-21 will "focus on self-sufficiency and import substitution" in the face of sanctions. Achieving this is a complex task; developing indigenous substitutes for advanced systems can take years. However, some progress is evident. For example, the Aviadvigatel PD-14 turbojet, the first all-Russian high-bypass turbofan in decades, was developed for the MC-21 and certified in Russia in 2018. It will replace the American engine option on that jet. Likewise, the smaller PD-8 engine has been developed to replace the French Safran engines on the Superjet. Russian electronics firms are working on duplicating or replacing avionics modules and flight control systems that were previously imported. While these substitutions allow production to continue, they often come with trade-offs. The design changes have in some cases added weight or reduced performance; for instance, due to changes in materials and components under import substitution, the MC-21's airframe reportedly gained about 6 tons of weight, which reduces its range and fuel efficiency compared to the original design. This means that the first all-domestic versions of these aircraft may not fully match the specifications initially advertised, potentially making them less attractive to airlines. Over time, Russian engineers will aim to refine and optimize these systems, but the immediate goal is to get these planes into serial production using only Russian (or non-Western) parts—even if performance is slightly compromised—rather than remaining stalled.

The two main new aircraft models—the Sukhoi Superjet 100 and the Yakovlev (Irkut) MC-21—encapsulate both the potential and the difficulties of Russia's civil aviation ambitions. The Superjet 100 (SSJ100), which first flew in 2008 and began commercial service in 2011, was a test case for international collaboration. It was co-developed by Sukhoi Civil Aircraft Company with significant foreign input: its engines were made by a French-Russian joint venture (PowerJet SaM146), and Western firms supplied its avionics and interiors, and even helped with certification. The Superjet program showed that Russia could still design a competitive regional jet—it has comfortable passenger amenities and modern aerodynamics—but it faltered in after-sales support and reliability, as discussed. Interjet's experience and the withdrawal of other foreign operators underscored that sustaining an international aircraft program requires extensive logistics and customer service infrastructure, which Sukhoi lacked. The Superjet's production also never reached economies of scale; only around 200 were built over a decade, many of them for domestic use (Aeroflot was a major operator). Now, with Western partners gone, Russia is moving to the "SSJ-New" or SJ-100, which removes foreign content. The first SJ-100 prototype with Russian-made PD-8 engines had its maiden flight in 2023, and UAC targets certification by 2024–25. The government has directed funding to ensure these jets can be produced for Russian airlines (who will need them to replace aging regional fleets). If the SJ-100's performance and reliability can be maintained despite the new components, it could see renewed adoption domestically. Its export potential will likely hinge on Russia's ability to provide dependable support and on finding customers not deterred by sanctions—perhaps airlines in countries like Iran (which has expressed interest), or those in parts of Asia or Africa that are politically open to Russian products. Notably, without any U.S.-made parts, the Superjet could be sold to sanctioned countries freely—a deliberate aim of the redesign.

The MC-21 is even more critical for Russia's future prospects, as it targets the lucrative single-aisle market (150–200 seat jets) dominated by the 737 and A320 families. The MC-21 (also referred to as MS-21 earlier) began development in the mid-2000s and flew its first prototype in 2017. It features a composite wing and a spacious cabin, promising operating costs on par with Airbus and Boeing's latest models. Before 2022, it had accumulated around 175 firm orders, mostly from Russian airlines and leasing companies, with initial deliveries planned for 2021–2022. Sanctions delayed this timeline significantly by cutting off foreign supplies. As of 2025, full-scale production is now postponed to 2026, by which time UAC hopes to have resolved the supply chain issues. The MC-21's success is vital because it could provide a domestic alternative to the

hundreds of foreign jets in Russian airline fleets. The government has essentially directed Aeroflot and other state-influenced carriers to switch their future orders to the MC-21 and the smaller SJ-100. There is some optimism that, given a captive home market (Russia's airlines cannot buy Boeing/Airbus for the foreseeable future due to sanctions and political directives), the MC-21 will at least have guaranteed demand domestically in the 2020s. Whether it can ever become a significant export is another question. To do so, it would need to be competitive and also achieve certification by international regulators like the ICAO, which, under current East-West tensions, is complicated. Nonetheless, the Russian government is treating these programs as strategic endeavors, investing significant resources into them. As part of its broader import-substitution plan, officials have set ambitious production targets—for example, a goal (announced by Rostec in 2022) to produce 1,000 domestically-built airliners by 2030 to renew the fleet. This figure includes MC-21s, Superjets, Il-114 turboprops, and possibly revived Tu-214s. Most analysts view this target skeptically; producing 1,000 airliners in under a decade would be a formidable challenge even under ideal conditions. By comparison, it was noted that Russia and the Soviet Union together built only about 2,000 large commercial jetliners over many decades, and Russia has “a very hard time producing more than a handful of jets” per year under current constraints. The “1,000 by 2030” goal is therefore likely unattainable, but it serves as a rallying vision for mobilizing the industry.

In addition to brand-new designs, Russia is also reviving older Soviet-era models as an interim measure to quickly increase domestic aircraft availability. One example is the Tupolev Tu-214, a twin-jet medium-range airliner developed in the 1990s (essentially a variant of the Tu-204). Production of the Tu-204/214 had largely stopped by the 2010s after only limited numbers were made. However, with the sudden need to replace foreign aircraft, UAC has restarted Tu-214 manufacturing at the Kazan Aviation Plant. In 2023–24, at least a couple of new Tu-214s were built, one reportedly intended for Red Wings Airlines (though it was ultimately used as a VIP government transport). Plans have been announced to produce dozens more Tu-214s through the late 2020s. Though the Tu-214 is based on older technology (heavier and less efficient than contemporary jets), it has the advantage of being already certified in Russia and using entirely Russian systems. This makes it a pragmatic, if not optimal, solution to boost fleet numbers without waiting for the MC-21. Similarly, the Ilyushin Il-96, a four-engine long-range widebody from the early 1990s, saw its passenger variant production end years ago, but a few airframes are still produced as tanker or VIP versions. There is discussion of building a small number of Il-96s (perhaps updated as Il-96-400M) to fulfill the long-haul needs of Russian airlines in the interim, since Boeing/Airbus widebodies are unavailable. However, given the Il-96’s high operating cost, airlines would likely use them sparingly (possibly mainly for special missions or if absolutely needed). The Ilyushin Il-114-300, a modernized turboprop for regional routes, is another revival—aimed to replace aging Antonov An-24/26 turboprops and ATR-72s. Its production is slated to ramp up in the mid-2020s and is relatively less complex due to simpler technology.

The Russian government has reinforced support mechanisms to realize these projects. UAC, being state-owned (under Rostec’s majority stake), is effectively an arm of policy. The State Armament Program and National Projects now include civil aviation components, budgeting large sums for research, production facilities, and even leasing companies to purchase domestic aircraft. For instance, state leasing companies have placed bulk orders for MC-21s and SJ-100s which they will lease to airlines at subsidized rates, ensuring manufacturers have demand. Also, programs to enhance the domestic supply chain—such as investment in materials (Russia had to develop its own source of aerospace-grade composites after being cut off from Hexcel/Toray supplies in 2018)—are ongoing. The timeline for returns on these investments is extended; officials acknowledge that full serial production of the “Russified” MC-21 and SJ-100 will only start around 2026, and even then, initial production rates will be modest. The success of these programs will depend on consistent funding and avoiding further disruptions. Given Russia’s economic situation under sanctions, there is some uncertainty about maintaining the required pace of investment—but so far, government commitment appears strong, treating civil aviation manufacturing as a strategic industry on par with defense.

With traditional Western partnerships no longer viable, Russia is looking elsewhere for collaboration and

buyers. The unraveling of the COMAC CRAIC CR929 partnership (with the “R” for Russia being dropped as per recent reports) was a setback in the widebody segment, though Russian officials have downplayed it publicly. Going forward, Russia might attempt more limited cooperation with China—for example, joint work on specific components or perhaps selling some MC-21s to Chinese leasing companies if China, for geopolitical reasons, decides to support Russia’s industry. However, China has its own civil aircraft ambitions and may see limited benefit in promoting a competitor. Another angle is courting countries in the Middle East or Asia. In the late 2010s, there were talks of Saudi Arabia potentially buying Superjets or MC-21s, and joint investment with the UAE was proposed. Those did not materialize, but the geopolitical realignment (with Gulf states maintaining ties with Russia) could revive such prospects in the future, especially if Western options are restricted. India has a history of defense co-production with Russia; while India’s nascent civil aviation manufacturing is minimal, there could be interest in cooperation on something like a 90-seat regional jet. Similarly, Iran is a key potential market: sanctioned by the West, Iran needs new aircraft desperately and cannot acquire Boeing/Airbus. Russia and Iran have engaged in talks for sales of the SJ-100 and MC-21 once those planes are available without Western parts. In 2022, after sanctions on Russia, the two countries have drawn closer, and there were announcements of Iran intending to purchase dozens of Superjets once the domestic version is ready. If executed, Iran could become the first sizable foreign customer for Russia’s new jets—a mutually beneficial arrangement for two sanctioned economies. Operating modern aircraft also requires maintenance capabilities, so Russia might also assist in setting up local MRO (maintenance, repair, overhaul) hubs in countries like Iran or others that operate its aircraft, as part of the sales packages.

The prospects for Russia’s civil aircraft industry can be viewed through two lenses: domestic necessity and international competitiveness. Domestically, the industry will likely survive and possibly thrive in terms of order volume because the Russian state is effectively creating an insulated market for it. With Airbus and Boeing products banned or unsupported, Russian airlines have no choice but to turn to UAC’s offerings for fleet renewal. The government’s plan projects Russian carriers will acquire hundreds of SJ-100s, MC-21s, Tu-214s, etc., in the coming decade to replace the roughly 700 Western-built commercial aircraft in the fleet (many of which will age out by 2030). This suggests a captive demand that could indeed reach on the order of 500+ new planes if timelines hold. Whether 1,000 airliners by 2030 is achievable or not, even meeting half of that would be a massive increase from current production levels. The state backing and mandate make it plausible that Russia will ramp up output significantly (perhaps tens of planes per year by the late 2020s, versus single-digits a few years ago). In this sense, the development prospect within Russia is positive—the industry will not die out; rather, it is transforming to serve a decoupled domestic/regional market.

However, on the international stage, prospects remain limited in the short to medium term. Russian civil aircraft will be hard-pressed to gain significant global market share beyond politically aligned countries. Major airlines in competitive markets base decisions on economics, and as long as Boeing/Airbus products are available to them, those will be preferred. The performance gap may even widen if Russian jets have to compromise on technology (e.g., a heavier MC-21 with lower range) while Boeing and Airbus continue innovating (e.g., next-gen engines, use of advanced materials). Additionally, support networks for Russian planes overseas are scant—a critical factor for airlines thinking about lifecycle costs. There is also the matter of financing: most airlines finance purchases through international leasing companies or export-credit agencies (like U.S. ExIm Bank or European ECAs for Airbus). These avenues are closed for Russian products under sanctions; instead, Russia would likely have to provide its own government-backed financing to foreign buyers, which it may do selectively.

One area of opportunity could be if Russia and China find a way to partner on certain models—for instance, Russia could potentially offer help on a stretched version of China’s COMAC C919 or, conversely, seek Chinese help to market the MC-21 in Asia. If the geopolitical bloc of non-Western countries solidifies, we might see an emerging parallel system of aviation commerce where Russian (and Chinese) aircraft are used within that sphere. However, this is speculative and would take time, given that even China’s C919 is only just entering service domestically and has virtually no foreign customers yet.

In the interim, Russia is also relying on an unconventional solution to keep its aviation sector running: the use of parallel imports and secondary markets for parts. As noted, hundreds of Boeing/Airbus jets remain in Russia, and the government/airlines are finding ways to source spare parts through third countries or by stripping grounded jets. This measure, while extralegal under international norms, can bridge the gap until enough domestic planes come online. It highlights that despite official rhetoric of autarky, practical interdependence persists—Russia's civil aviation cannot instantly sever all ties with Western technology, and maintaining service levels requires creative trade solutions. Over time, if domestic production meets targets, the reliance on gray market imports may wane, but it is a critical part of the short-term prospects.

In conclusion, Russia's development prospects in civil aircraft are a mix of determined state-driven progress and sobering practical limitations. The country is effectively reinventing its civil aviation program under adverse conditions. The coming decade could see Russia re-emerge as a notable producer of passenger planes—not at Soviet levels, but potentially numbering in the dozens per year—which would be a remarkable turnaround from the 1990s nadir. These aircraft will likely serve mostly Russian and a few allied skies. The broader impact on the global aircraft market will probably remain marginal unless geopolitical shifts enable wider adoption. Much will depend on execution: meeting development timetables, ensuring quality (a crash or major safety issue with a new Russian model could be devastating for confidence), and scaling production efficiently. The government's heavy involvement provides direction and resources, but also risks politicizing decisions that in a market context would be driven by cost and profit. Still, given the strategic importance placed on the sector, one can expect Russia to press ahead with or without international support. Realistically, import substitution will solve some problems while introducing others (like slight performance loss), and international sales will be modest. Yet, in a few years' time, we may see Aeroflot flight decks filled with domestically built Superjets and MC-21s—an outcome that seemed almost unattainable a decade ago.

Conclusion

The trajectory of civil aircraft trade and production in the USSR and modern Russia is a story of rise, fall, and attempted rebirth, closely intertwined with each era's economic system and geopolitical context. The Soviet Union built a far-reaching aviation empire under central planning, turning out hundreds of aircraft annually to serve a closed market and allied partners. That system, while quantitatively impressive, was ill-suited to survive in a liberalized global economy. After 1991, Russia's civil aircraft industry suffered a collapse due to fragmented supply chains, loss of patronage, financial crises, and the influx of superior foreign competitors—factors that reduced a world-leading industry to a fraction of its former size within a decade. By the early 2000s, Russia's role in civil aircraft trade had flipped: it was almost entirely an importer of aircraft technology, and its once-renowned design bureaus were struggling to stay afloat.

Efforts to reverse this decline have been ongoing for two decades, combining economic and policy measures: consolidation of the industry under UAC, selective protectionism, and heavy state subsidies. These yielded only partial success in the 2000s and 2010s—a few new models were developed (notably the Superjet 100), and production saw a mild uptick, but Russia remained a minor player internationally. The decisive turn came with the geopolitical rifts of the 2010s–2020s, which simultaneously cut Russia off from Western aviation imports and prompted its leadership to invest in self-sufficiency. International trade agreements and norms, such as WTO rules, gradually opened Russia's market, yet recent export controls and sanctions have effectively closed off Russia's access to Western aircraft and parts, forcing an inward pivot.

The current landscape is thus one of a state-driven renaissance under constraint. Key reasons for Russia's past decline—including lack of competitiveness, technological gaps, and unreliable support—remain cautionary challenges for the future. The government's development strategy acknowledges these: it seeks to close the technology gap by fostering domestic alternatives (engines, avionics), to mitigate support issues by controlling the whole supply chain, and to guarantee a market through political directives (ensuring

domestic airlines buy Russian planes). The success of this strategy is not assured, but it has led to concrete milestones like new indigenous engines (PD-14, PD-8) and the imminent entry of the MC-21 and SJ-100 with fully local configurations.

From an economics perspective, Russia is in effect creating a parallel civil aviation ecosystem decoupled from the West. In the short run, this involves significant inefficiencies—duplication of R&D already done elsewhere, production at a smaller scale, and likely higher unit costs. In the long run, it may grant Russia a measure of strategic independence in aviation (much as the USSR had, albeit at an economic cost). For the global market, Russian civil aircraft will likely occupy niche spaces or serve politically aligned markets, rather than pose a serious threat to the Boeing/Airbus duopoly in the near future. The comparative analysis shows that whereas the USSR leveraged a captive bloc to sustain its aerospace sector, modern Russia must navigate in a far more competitive and unforgiving global market. Without the advantage of a huge integrated economy or cutting-edge innovation, Russia's best hope is to fill specific market gaps (for example, countries underserved by Western suppliers) and to gradually improve its products to internationally acceptable standards.

The current challenges—industrial capacity bottlenecks, funding needs, and global competition—will persist. Russia's capacity to produce at scale will be the first test: meeting domestic demand for hundreds of aircraft by 2030 requires not just financing but project management and labor force mobilization on a scale not seen in its civilian sector for thirty years. The financing will rely on continued political prioritization; any economic downturn or reallocation of resources (for instance, due to prolonged military expenditures) could jeopardize the civil programs. Competition will only become stiffer as new players like China mature and Boeing/Airbus eventually introduce next-generation models. Moreover, winning back trust (both among domestic airlines, which still remember the difficulties with past Russian planes, and among any foreign buyers) is an intangible but crucial hurdle. This includes ensuring safety—a single major accident or failure traced to design flaws could significantly set back confidence in Russian aircraft. Thus far, Russian civil aircraft have generally good safety records, but maintaining rigorous quality control under the rush to indigenize components will be essential.

In conclusion, the civil aircraft industries of the USSR and modern Russia present a study in contrasts and continuities. The Soviet Union's achievements were undone by systemic weaknesses exposed under new conditions, and modern Russia is attempting to rebuild on a very different foundation of market economics yet guided by heavy state planning. The causes of the post-Soviet decline are well-understood—economic shock, competition, and broken institutions—and serve as lessons informing current policies. Russia's contemporary strategy is arguably one of strategic protectionism coupled with forced innovation, a path that aims to create a sustainable if self-contained industry. The prospects for development are cautiously optimistic in the domestic context, as political will and necessity drive progress, but guarded on the international front, where Russian planes must prove themselves on commercial merit.

Ultimately, Russia's ability to reclaim even a fraction of its Soviet-era status in civil aviation will depend on whether it can deliver reliable, efficient aircraft at a reasonable cost and support them in service—a formula that transcends politics. If it can, we may see a gradual re-entry of Russian jets in various corners of the world, providing an alternative to the dominant Western models. If it cannot, the industry may survive on state support for domestic needs but never truly thrive or innovate. The coming decade will be decisive. In the broader frame of economics and international trade, this case underscores how industrial competitiveness is not only a function of resources and legacy but also of integration into global systems—or the lack thereof. Russia's civil aircraft sector, forged in socialist autarky, then nearly lost in globalization, and now being reborn in isolation, encapsulates this complex interplay between politics, economics, and technology in international trade. The outcome of this ongoing experiment will be watched closely by economists and policymakers, as it will inform the understanding of how much a major manufacturing industry can be insulated from global forces and yet remain viable.

Author Contributions: At first page.

Approval: All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable

Acknowledgments: Not Mentioned.

Conflicts of Interest: The authors declare no conflict of interest.

References

- [1] Zyuganov, S., & Koval, A. (2023). Economic Reforms and Industrial Strategy in Russia's Aerospace Sector: A Historical Perspective. *Journal of Russian Economic Studies*, 58(4), 105-124.
- [2] Russia Quietly Quits China Joint Airline Project. *Newsweek*. Available at: <https://www.newsweek.com/russia-quits-china-joint-airliner-project-1929610> [Accessed 12 Oct. 2025]
- [3] Baker, D., & Smith, L. (2022). The Impact of Sanctions on Russia's Aviation Industry: Technological Challenges and Economic Consequences. *International Trade Journal*, 37(3), 215-232.
- [4] Kravtsov, V. (2021). Consolidation and Reform in the Russian Aerospace Industry: The Case of United Aircraft Corporation. *Aerospace Economics and Policy*, 32(2), 79-95.
- [5] Kopylov, A., & Leonov, V. (2021). Russia's Aviation Market: From Decline to Revival?. *Eurasian Economic Review*, 11(1), 45-60.
- [6] Only 13 Commercial Aircraft Built in Russia Since Ukraine Invasion. *Air Data News*. Available at: <https://www.airdatanews.com/only-13-commercial-aircraft-built-in-russia-since-ukraine-invasion/> [Accessed 14 Sept. 2025]
- [7] How Russia joining the World Trade Organization affects aviation. *Corporate Jet Investor*. Available at: <https://www.corporatejetinvestor.com/news/russia-joins-wto-aviation-741/> [Accessed 28 Sept. 2025]
- [8] Petrov, S., & Ivanov, M. (2020). Export Controls and Trade Barriers in Russia's Aerospace Sector: The Impact of Western Sanctions. *International Journal of Air Transport*, 45(1), 54-67.
- [9] Iran Offers A Unique Opportunity For Russian Aerospace Industry. *Radio Farda*. Available at: <https://en.radiofarda.com/a/iran-purchase-russian-passenger-aircraft/29247552.html> [Accessed 23 Oct. 2025]
- [10] US Blocks Sale of Sukhoi Superjet Aircraft to Iran. *Defense Mirror*, 13 Mar. 2019. Available at: https://defensemirror.com/news/23982/US_Blocks_Sale_of_Sukhoi_Superjet_Aircraft_to_Iran [Accessed 7 Oct. 2025]
- [11] The Russian Aviation Industry Two Years after the Sanctions. *Wilson Center*. Available at: <https://www.wilsoncenter.org/audio/russian-aviation-industry-two-years-after-sanctions> [Accessed 21 Sept. 2025]
- [12] Semenov, D. (2022). Challenges in the Production of Domestic Civil Aircraft in Russia: A Technical and Economic Analysis. *Russian Journal of Aerospace Engineering*, 59(3), 103-120.
- [13] Frolov, E., & Dushkin, V. (2023). Russia's Aircraft Export Strategy: Overcoming Barriers and Enhancing Competitiveness. *International Journal of Aviation Economics*, 31(4), 67-82.
- [14] Vasilyev, N., & Terekhin, A. (2021). Soviet Legacy and Modernization: The Revival of Russia's Aircraft Industry. *Journal of East European Economics*, 59(5), 112-127.
- [15] Wright, M., & Atkinson, S. (2020). Economic Impact of Trade Sanctions on Russian Aerospace Industry. *Global Trade Review*, 18(3), 28-41.
- [16] Gavrilov, Y., & Nikolaev, P. (2022). Aviation in Russia: From Isolation to Integration?. *World Economics and Politics*, 27(2), 90-103.

